The New Quantum Era - innovation in quantum computing, science and technology cover art

The New Quantum Era - innovation in quantum computing, science and technology

The New Quantum Era - innovation in quantum computing, science and technology

By: Sebastian Hassinger
Listen for free

LIMITED TIME OFFER | £0.99/mo for the first 3 months

Premium Plus auto-renews at £8.99/mo after 3 months. Terms apply.

About this listen

Your host, Sebastian Hassinger, interviews brilliant research scientists, software developers, engineers and others actively exploring the possibilities of our new quantum era. We will cover topics in quantum computing, networking and sensing, focusing on hardware, algorithms and general theory. The show aims for accessibility - Sebastian is not a physicist - and we'll try to provide context for the terminology and glimpses at the fascinating history of this new field as it evolves in real time.(c) Sebastian Hassinger 2025 Physics Science
Episodes
  • Regional quantum development with Alejandra Y. Castillo
    Jan 19 2026

    Alejandra Y. Castillo, former Assistant Secretary of Commerce for Economic Development and now Chancellor Senior Fellow for Economic Development at Purdue University Northwest, joins your host, Sebastian Hassinger, to discuss how quantum technologies can drive inclusive regional economic growth and workforce development. She shares lessons from federal policy, Midwest tech hubs, and cross-state coalitions working to turn quantum from lab research into broad-based opportunity.

    Themes and key insights

    • Quantum as near-term and multi-faceted: Castillo pushes back on the idea that quantum is distant, emphasizing that computing, sensing, and communications are already maturing and attracting serious investment from traditional industries like biopharma.
    • From federal de-risking to regional ecosystems: She describes the federal role as de-risking early innovation through programs under the CHIPS and Science Act while stressing that long-term success depends on regional coalitions across states, universities, industry, philanthropy, and local government.
    • Inclusive workforce and supply-chain planning: Castillo argues that “quantum workforce” must go beyond PhDs to include a mapped ecosystem of jobs, skills, suppliers, housing, and infrastructure so that local communities see quantum as opportunity, not displacement.
    • National security, urgency, and inclusion: She frames sustained quantum investment as both an economic and national security imperative, warning that inconsistent U.S. funding risks falling behind foreign competitors while also noting that private capital alone may ignore inclusion and regional equity.

    Notable quotes

    • “We either focus on the urgency or we’re going to have to focus on the emergency.”
    • “No one state is going to do this… This is a regional play that we will be called to answer for the sake of a national security play as well.”
    • “We want to make sure that entire regions can actually reposition themselves from an economic perspective, so that people can stay in the places they call home—now we’re talking about quantum.”
    • “Are we going to make that same mistake again, or should we start to think about and plan how quantum is going to also impact us?”

    Articles, papers, and initiatives mentioned

    • America's quantum future depends on regional ecosystems like Chicago's — Alejandra’s editorial in Crain’s Chicago Business calling for sustained, coordinated investment in quantum as a national security and economic priority, highlighting the role of the Midwest and tech hubs.
    • CHIPS and Science Act (formerly “Endless Frontier”) — U.S. legislation that authorized large-scale funding for semiconductors and science, enabling EDA’s Tech Hubs and NSF’s Engines programs to back regional coalitions in emerging technologies like quantum.
    • EDA Tech Hubs and NSF Engines programs — Federal initiatives that fund multi-state consortiums combining universities, companies, and civic organizations to build durable regional innovation ecosystems, including quantum-focused hubs in the Midwest.
    • National Quantum Algorithms Center — This center explores quantum algorithms for real-world problems such as natural disasters and biopharma discovery, aiming to connect quantum advances directly to societal challenges.
    • Roberts Impact Lab at Purdue Northwest (with Quantum Corridor) – A testbed and workforce development center focused on quantum, AI, and post-quantum cryptography, designed to prepare local talent and companies for quantum-era applications.
    • Chicago Quantum Exchange and regional partners (Illinois, Indiana, Wisconsin) – A multi-university and multi-state collaboration that pioneered a model for regional quantum ecosystems.
    Show More Show Less
    32 mins
  • Majorana qubits with Chetan Nayak
    Jan 12 2026
    In this episode of The New Quantum Era, your host Sebastian Hassinger is joined by Chetan Nayak, Technical Fellow at Microsoft, professor of physics at the University of California Santa Barbara, and driving force behind Microsoft's quantum hardware R&D program. They discuss a modality of qubit that has not been covered on the podcast before, based on Majorana fermonic behaviors, which have the promise of providing topological protection against the errors which are such a challenge to quantum computing. Guest Bio Chetan Nayak is a Technical Fellow at Microsoft and leads the company’s topological quantum hardware program, including the Majorana‑1 processor based on Majorana‑zero‑mode qubits. He is also a professor of physics at UCSB and a leading theorist in topological phases of matter, non‑Abelian anyons, and topological quantum computation. Chetan co‑founded Microsoft’s Station Q in 2005, building a bridge from theoretical proposals for topological qubits to engineered semiconductor–superconductor devices. What we talk about Chetan’s first exposure to quantum computing in Peter Shor’s lectures at the Institute for Advanced Study, and how that intersected with his PhD work with Frank Wilczek on non‑Abelian topological phases and Majorana zero modes. The early days of topological quantum computation: fractional quantum Hall states at , emergent quasiparticles, and the realization that braiding these excitations naturally implements Clifford gates. How Alexei Kitaev’s toric‑code and Majorana‑chain ideas connected abstract topology to concrete condensed‑matter systems, and led to Chetan’s collaboration with Michael Freedman and Sankar Das Sarma. The 2005 proposal for a gallium‑arsenide quantum Hall device realizing a topological qubit, and the founding of Station Q to turn such theoretical blueprints into experimental devices in partnership with academic labs. Why Microsoft pivoted from quantum Hall platforms to semiconductor–superconductor nanowires: leveraging the Fu–Kane proximity effect, spin–orbit‑coupled semiconductors, and a huge material design space—while wrestling with the challenges of interfaces and integration. The evolution of the tetron architecture: two parallel topological nanowires with four Majorana zero modes, connected by a trivial superconducting wire and coupled to quantum dots that enable native Z‑ and X‑parity loop measurements. How topological superconductivity allows a superconducting island to host even or odd total electron parity without a local signature, and why that nonlocal encoding provides hardware‑level protection for the qubit’s logical 0 and 1. Microsoft’s roadmap in a 2D “quality vs. complexity” space: improving topological gap, readout signal‑to‑noise, and measurement fidelity while scaling from single tetrons to error‑corrected logical qubits and, ultimately, utility‑scale systems. Error correction on top of topological qubits: using surface codes and Hastings–Haah Floquet codes with native two‑qubit parity measurements, and targeting hundreds of physical tetrons per logical qubit and thousands of logical qubits for applications like Shor’s algorithm and quantum chemistry. Engineering for scale: digital, on–off control of quantum‑dot couplings; cryogenic CMOS to fan out control lines inside the fridge; and why tetron size and microsecond‑scale operations sit in a sweet spot for both physics and classical feedback. Where things stand today: the Majorana‑1 chiplet, recent tetron loop‑measurement experiments, DARPA’s US2QC program, and how external users—starting with government and academic partners—will begin to access these devices before broader Azure Quantum integration. Papers and resources mentionedThese are representative papers and resources that align with topics and allusions in the conversation; they are good entry points if you want to go deeper.Non‑Abelian Anyons and Topological Quantum Computation – S. Das Sarma, M. Freedman, C. Nayak, Rev. Mod. Phys. 80, 1083 (2008); Early device proposalsSankar Das Sarma, Michael Freedman, and Chetan Nayak, “Topological quantum computation,” Physics Today 59(7), 32–38 (July 2006).Roadmap to fault‑tolerant quantum computation using topological qubits – C. Nayak et al., arXiv:2502.12252. Distinct lifetimes for X and Z loop measurements in a Majorana tetron - C. Nayaak et al., arXiv:2507.08795.Majorana qubit codes that also correct odd-weight errors - S. Kundu and B. Reichardt, arXiv:2311.01779. Microsoft's Majorana 1 chip carves new path for quantum computing, Microsoft blog post
    Show More Show Less
    1 hr and 3 mins
  • Peaked quantum circuits with Hrant Gharibyan
    Dec 12 2025
    In this episode of The New Quantum Era, Sebastian talks with Hrant Gharibyan, CEO and co‑founder of BlueQubit, about “peaked circuits” and the challenge of verifying quantum advantage. They unpack Scott Aaronson and Yuxuan Zhang’s original peaked‑circuit proposal, BlueQubit’s scalable implementation on real hardware, and a new public challenge that invites the community to attack their construction using the best classical algorithms available. Along the way, they explore how this line of work connects to cryptography, hardness assumptions, and the near‑term role of quantum devices as powerful scientific instruments.Topics CoveredWhy verifying quantum advantage is hard The core problem: if a quantum device claims to solve a task that is classi-cally intractable, how can anyone check that it did the right thing? Random circuit sampling (as in Google’s 2019 “supremacy” experiment and follow‑on work from Google and Quantinuum) is believed to be classically hard to simulate, but the verification metrics (like cross‑entropy benchmarking) are themselves classically intractable at scale.What are peaked circuits? Aaronson and Zhang’s idea: construct circuits that look like random circuits in every respect, but whose output distribution secretly has one special bit string with an anomalously high probability (the “peak”). The designer knows the secret bit string, so a quantum device can be verified by checking that measurement statistics visibly reveal the peak in a modest number of shots, while finding that same peak classically should be as hard as simulating a random circuit.BlueQubit’s scalable construction and hardware demo BlueQubit extended the original 24‑qubit, simulator‑based peaked‑circuit construction to much larger sizes using new classical protocols. Hrant explains their protocol for building peaked circuits on Quantinuum’s H2 processor with around 56 qubits, thousands of gates, and effectively all‑to‑all connectivity, while still hiding a single secret bit string that appears as a clear peak when run on the device.Obfuscation tricks and “quantum steganography” The team uses multiple obfuscation layers (including “swap” and “sweeping” tricks) to transform simple peaked circuits into ones that are statistically indistinguishable from generic random circuits, yet still preserve the hidden peak.The BlueQubit Quantum Advantage Challenge To stress‑test their hardness assumptions, BlueQubit has published concrete circuits and launched a public bounty (currently a quarter of a bitcoin) for anyone who can recover the secret bit string classically. The aim is to catalyze work on better classical simulation and de‑quantization techniques; either someone closes the gap (forcing the protocol to evolve) or the standing bounty helps establish public trust that the task really is classically infeasible.Potential cryptographic angles Although the main focus is verification of quantum advantage, Hrant outlines how the construction has a cryptographic flavor: a secret bit string effectively acts as a key, and only a sufficiently powerful quantum device can efficiently “decrypt” it by revealing the peak. Variants of the protocol could, in principle, yield schemes that are classically secure but only decryptable by quantum hardware, and even quantum‑plus‑key secure, though this remains speculative and secondary to the verification use case. From verification protocol to startup roadmap Hrant positions BlueQubit as an algorithm and capability company: deeply hardware‑aware, but focused on building and analyzing advantage‑style algorithms tailored to specific devices. The peaked‑circuit work is one pillar in a broader effort that includes near‑term scientific applications in condensed‑matter physics and materials (e.g., Fermi–Hubbard models and out‑of‑time‑ordered correlators) where quantum devices can already probe regimes beyond leading classical methods.Scientific advantage today, commercial advantage tomorrow Sebastian and Hrant emphasize that the first durable quantum advantages are likely to appear in scientific computing—acting as exotic lab instruments for physicists, chemists, and materials scientists—well before mass‑market “killer apps” arrive. Once robust, verifiable scientific advantage is established, scaling to larger models and more complex systems becomes a question of engineering, with clear lines of sight to industrial impact in sectors like pharmaceuticals, advanced materials, and manufacturing.The challenge: https://app.bluequbit.io/hackathons/
    Show More Show Less
    30 mins
No reviews yet